A Highly Reversible Room-Temperature Sodium Metal Anode

نویسندگان

  • Zhi Wei Seh
  • Jie Sun
  • Yongming Sun
  • Yi Cui
چکیده

Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Na Metal Anode: “Holy Grail” for Room-Temperature Na-Ion Batteries?

Issues such as fossil fuel depletion, environmental pollution, and global warming have triggered much interest in clean/renewable energy sources and the development of electric vehicles (EVs). To address these issues, advanced energy conversion and storage technologies play a crucial role. With relentless efforts in the past decades, Li-ion batteries (LIBs) have become the primary source to pow...

متن کامل

A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability.

We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/gS capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confine...

متن کامل

Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery

Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-...

متن کامل

High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.

A Sb/C nanocomposite was synthesized and found to deliver a reversible 3 Na storage capacity of 610 mA h g(-1), a strong rate capability at a very high current of 2000 mA g(-1) and a long-term cycling stability with 94% capacity retention over 100 cycles, offering practical feasibility as a high capacity and cycling-stable anode for room temperature Na-ion batteries.

متن کامل

Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability.

Antimony nanoparticle decorated N-rich porous carbon nanosheets were prepared through a sol-gel route. The composite displayed high reversible capacity, superior rate performance and long cycling stability as an anode material for room temperature Na-ion batteries. Even at an ultrahigh charge-discharge rate of 2 A g(-1), a large specific capacity of 220 mA h g(-1) was still achieved after 180 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015